Challenges choosing storage systems for experimental data

Nick Rees

Overview

- Fast parallel storage
- Comments on storage purchases
- General purpose storage
- Caveats for large storage systems.

Fast Storage

- First storage (2006) was installed separately all on beamlines
 - slow (30 MB/sec) and difficult to manage
- Bought central Lustre/DDN system in 2008
 - 3 GB/sec
 - worked OK for MX and cluster processing
 - had problems with metadata and small files
- Bought second Lustre/DDN system in early 2011
 - 6 GB/sec
 - Faster metadata
 - Used mainly for MX:
 - 3 x 25 Hz Pilatus 6M (150 MB/sec each)
 - 1x30 Hz Pilatus 2M
 - 1 ADSC system
- Old system is still used for for tomography
 - 4 Hz PCO4000 (90 MB/sec)

Data Rates while Data Taking

A less regular example

Next challenge

- Faster detectors
 - 100 Hz Pilatus (600 MB/sec write).
 - Tomography detector with 2 PCO.edge systems writing simultaneously (2x900 MB/sec).
- Looking at next generation DDN system
 - SFA12K-20 ~ 16 GB/sec
 - SFA12K-40 ~ 32 GB/sec
- But problem is with client write speed.
 - Lustre 1.X client write speed is limited to ~400 MB/sec (or ~750 MB/sec with checksums off).
 - One core in the client is pegged at 100% usage.
 - GPFS is much better (~3 GB/sec)
 - Lustre 2.0 is meant to be better (we are just starting testing)

Client Write Speed

From: R Hedges K Fitzgerald M G and Stearman D "Comparison of leading parallel NAS file systems on commodity hardware" https://e-reports-ext.llnl.gov/pdf/457620.pdf

Storage Purchases

- Storage purchases are complicated because:
 - Storage is expensive and complicated.
 - Procurement want you to go to tender to prove cost competitiveness.
 - Vendors have a "bid registration" process in which they will guarantee one supplier 10-20% better pricing than anyone else.
 - Vendor price lists are fairy-tales. A good price is normally > 70% discount off list prices.
- The result is that if you know what you want and the vendor is interested, you can get better prices by negotiation than by tender.
 - and save everyone a lot of time and effort.

New storage system

- In late 2011/early 2012 we tried to buy a general purpose storage system.
- Requirements were:
 - Network attached storage,
 - Reasonable performance (not high speed or parallel)
 - Windows (CIFS) and Linux (NFSv3) clients,
 - ACL's, snapshots and replication
- All suppliers claimed they could meet all technical requirements before the bid, but in the end only one was left
 - We required draft Posix 1e standard ACL's, and most suppliers provided NFSv4 ACL's

Posix 1e vs NFSv4 ACLs

Posix 1e ACL's

- Use Unix uidNumbers and gidNumbers internally
- Are order independent
- Were available on Solaris since mid 1990's and on Linux for at least 10 years
- Were never ratified as a standard.

NFSv4 ACL's

- use user@domain strings internally
- Closely matches Windows ACL's (order dependent).
- Needs Linux to provide uidNumber and gidNumber mapping functions.
- Only recently available on Linux not supported on many target file systems.

File system evaluation

- We spent 4 months evaluating the file system.
- Found numerous little problems many claimed "to be fixed in the next release"
- Problems with GUI and command line not matching.
 - GUI was an add-on that never really worked
- Spent many days on phone with support in US, China and India.
- Ultimately found system hanging for long periods at times.
 - Turned out that whenever a snapshot was taken when a file had extended attributes the whole file system was locked while a copy was made of the extended attributes.
- Snapshots took 10 minutes with 38 million files...

The result

- Ultimately we rejected the product
 - No money, but a lot of time was spent.
- Existing systems were replaced with a short-term XFS/NFS solution
 - No replication or snapshots.
- Soon after implementation, we started getting compilations failing in non-reproducible ways with an error of:
 - "Value too large for defined data type"

File system sizes

- Unix file systems have a concept of an inode
- inode number is often the offset of the inode in the file system (in units of the inode size)
 - if the inode size is 512 bytes (2^9), inode address > 2TB (2^{41}) from the start of the file system is > 32 bits
- > 32 bit inodes creates problems with 32 bit system calls
 - Linux stat and readdir
 - VxWorks readdir
- Core 64 bit operating system software is safe, but you need to check your 32 bit binaries. For example:
 - VxWorks cross-compiler on Linux needs rebuilding with CFLAGS set to:
 - -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64

Morals of the story

- Fast parallel file systems usually have slow metadata.
- Parallel file systems may be fast in aggregate performance, but single writer performance is limited by the client.
- Don't believe the manufacturer's you need to test everything.
- The storage market is such that the tender process is often not optimal.
- Most commercial NAS systems use NFSv4 ACL's and this isn't mainstream in Linux yet.
- Large file system support is not just large files, but also large inode numbers.
- 32 bit applications may need to be recompiled with large file systems.

